A tutorial on trigonometric curve fitting

By Cedrick Collomb*

Abstract. This tutorial introduces the concept and usefulrésspproximating a signal by a
sum of sinusoidal functions hopefully in a simplamer intelligible to any reader with
minimal mathematical and engineering skills. Ther®ralgorithm for trigonometric curve
fitting is explained in full detail, formulas areerived and every step is purposely made
unnecessarily detailed for ease of understandiagtc® code is provided as a way to skip the
potential formula obfuscation in order to help teader implement and use the ideas behind
this tutorial immediately after reading this docurne

1. Introduction

Joseph Fourier changed forever the mathematics samehce landscape when he
introduced to the world the fact that periodic fuimies could be expressed as
trigonometric series, his discovery was so astamgsat the time that even some the most
brilliant mathematicians of that period had soméialilties accepting his surprising
results. Fourier's theory generated interest tthemrattempt to break down a function as
a sum of simple sinusoidal waves and thus gavetoiske field of Harmonic Analysis,
which has major implications in a wide range ofagr&éom audio analysis and synthesis
to stock market analysis and prediction [1][2].

The discrete Fourier transform, a process to tomnsfseries of sample data to

frequencies, is unfortunately tightly linked to data window, which raise the issue of
resolution constraints. New methods called higloltg®n methods have to be used in
order to decompose signals with arbitrary frequescThere exists a method invented by
Prony [3] prior to Fourier's discovery that can eeks this challenge, and that method is
presented in this document.

The rest of the tutorial is organized as followecon 2 introduces the basic concept of
trigonometric fitting. Section 3 explains how tohao for frequencies using Prony’s
method. Section 4 explains how to find the ampktdnd phases. Section 5 concludes
this tutorial.

2. Trigonometric fitting

Trigonometric fitting is a method to approximatéuaction f by series of trigonometric
functions. The approximatiog of f can be written

0(x)=3 4 cos(@x+9) M

Wheremis the number of terms we want to approximétavith, o is the amplitudew
is the frequency ang, is the amplitude of thd'icosine function.

! ccollomb@yahoo.comhttp://ccollomb.free. fr/

To transform the previous equation we need to lsédilowing trigonometric identity.
cos(a+b) = coga) cofb)- sifa) sib) (2)

Using identity (2) we can rewrite (1) as

0(x) =3 a[cos{@x) cofp) - sifax) sifp)]
=3 pcos,) codx) -2, sifg) sifw)
Thereforeg can also be written interchangeably with (1) defa
0(x)= Y a cos{ep) + 3. 4 sira) ©
And in this caser, = g cos(¢,) and B =-p sin(¢,).

It is to be noted that only is known at this stage. A value aofhas to be decided
depending on the problem at hand or accuracy ofoappation desired. If equation (1)
is used(A,),y + (@)pumy @Nd(8), 4,y have to be determined. If equation (3) is used

(cq)m[[l;mﬂ, (o)iD[[l;m]] and(ﬁ,)m[l;m]] have to be determined.
3. Finding thefrequencies (&), ...y

a. Prony’s reformulation of the problem

Let p=2m, the Prony method starts by replacing (3) by dllewing equation:
P
9(x)=2 rz (4)
j=1
Where y;, are complex numberg, =€, with 8, real numbers anif = -1.

If equation (4) can be solved and constrained abtthget couples of conjugaje and
z;, equation (4) can be transformed back into eqod89.

For all index j let there exists an indek so thaty, =7j and z, =z_]. then it results that

VZANZ =y 2y 2 =y 2 +ﬁ:2Re(yjzjx) = 2Re€yje“5") and therefore

ViZi & :2(Re(yj) co$x8;) - Infy;) si|(|x0j)) (5)

b. Prony’s polynomial

Prony’s original idea to solve (4) is to introduite polynomialP(z) that has all the

(zj)jq{l;pﬂ for roots.

P(z):|j(z—zj) (6)

There exists(ak)kq[o,pﬂ so that P(z)=> az"" (7)
’ k=0
p
By definition P(zj) =0Otherefore > az’™ =0 (8)
k=0
Also by definitionz, =€ thereforez, =™ -1 and thusP(i =0. Which leads to
Z, Z,
. & 1 Pz 12
the following equation a, ——=> a — =—> a7 =0.
k=0 4 k=0 Zj Z{ k=0
P
Therefore > az =0 9)

P
The polynomialQ(z) => a,z" in (9) has p roots as hd(z), moreover they are all

k=0

equal to the roots oP(z). ThereforeQ(z) =AP(z) . Rewriting P(z) = Zp:ap_kzk gives:
k=0

For all kO[[0; p] a =Aa, (10)

Considering tha(zi), contain couples of roots of the form=€", P(z) can be

i1 p]
m

transformed as followP(z) = |‘l (z—e“")(z—e“"l) :ﬁ(zz _(ei% +e0)z+e”" =) _

Therefore P(z)= ﬁl(zz -2cod6,)z+]) (11)

It follows that the(a,) are real and thad, =1 and a, =1, therefore thatl =1.

kdo;p]

Thus Ok O[[0; p] a =a,, (12)

c. ldentifying Prony’s polynomial coefficients

The next step is to find an equation that will heégtermine the(ak)kmﬂo coefficients.

Using (4), (9) and the fact the:t(zj) =0 gives:

Yag(xk)=Ya Yy =Y yzYaz Yyza(z)

k=0 j=1

Therefore iakg(x+ k)=0 (13)

k=0

m-1

Using (12) and (13) getd a (g(x+k)+g(x+p-k))+a,g(x+m)=0 and since

k=0
a, =1, the following result deflnlng(ak)kDIIl can be reached:
m-1
8,9 (x+m)+3 3 (g (x+k)+g(x+p-k))=-g(x)~g(x+p) (14)

k=1

The approximatiorg of f is done atN regularly spaced samples, with< N . Most of

the time whenN is large enough, equation (14) defines an oveerdehed, over
constrained linear equation, because it defiNesp equations for onlym unknown

variables. There are several different ways toesthose linear systems. A simple and
common method that is described in this tutorigdhesLeast-Squares (LS) method.

d. Least-Squares method to identify tfe) coefficients

k[Lm]

Since (14) gives too much data for not enough unkiso an error function which is the
sum of the square of residuals between the leftrigghd sides of equation (14), allows to
regroup everything under one sum and one line.

N-p m-1 2

e(a,.a,)= Z(aﬂg(x+m)+2ak (g(x+k)+g(x+ p-k))J (15)
x=1 k=0

To minimize (15), the poin(tal,_.,,am) at which De(al,,,_yam) =0 need to be found. It is

equivalent to solve for alj the following partial derivative equations:

de(a,. a,)
oa.

J

=0 (16)

To simplify the derivations lets defin®,, (x) = g(x+k)+g(x+ p-k), equation (15)

N- m-= 2
can therefore be rewritten &ﬁaleyn) = i(amg(XJf m)+zlaksg,k (X)j

x=1 k=0
de P <
It results that e 2>'S,, (X)(@ng (x+m)+> &S, (X)j 17)
i x=1 k=0
de P <
And that azzz 9(X+m)(&n9(X+m)+ZakSg,k(X)J (18)
x=1 k=0

Using (16) and (17) the following linear equatidas j O[1;m-1] can be found

S5, st Sas,) =-Ssas, (9 a9

Using (16) and (18) the following linear equatidas j = m can be found

fg(x+m)(ang(x+m)+m2_laksg,k(x)]=—§sg,o(x)g(x+m) (20)

x=1 k=1

Finally equations (19) and (20) can be put in neeorm.

550504 |
> o
I ES b SEWEERE .
N
3s(9a(xem)|
S5u800 Bsas) Salkems () |
Y 89800+ E 8080 T alcrm)S, (4
_E)Sg’l(x)g(x+m) h:Sg]m_l(x)g(x+m) gg(x+m)g(x+m)_

Although some source code is provided in the appesdlving equation (21) is outside
the scope of this tutorial but should not be a kdodor the reader since solving linear
systems is well addressed in the literature; sp¢gpand [6] for example.

e. Solving the polynomial for frequencies

This is the last part of the puzzle. At this stdge polynomial and its coefficients can be
determined, however nothing guarantees that thts nedl take the formz =e%, nor

that their conjugate will also be roots as desiretially. The necessary conditions to

establish constraints on tl@ek)kqll,m]] have not been shown to be sufficient. Instead of

doing so, stronger necessary conditions are ganfet derived by transforming the
polynomial in an alternative form.

m-1 p
Decomposing (8) give®(z) => a,z"* +a,z"+ > a.z"*, and using (12), it becomes
k=0

k=m+1

m-1 p
P(2)=Y az"*+a,z"+ Y a_z"* . Changing variables withk'=p-k , gives
k=0 k=m+1

k=p-k' andk’ goes fromp-p=0 to p-(m+1)=2m-m-1=m-1. The equation

m-1 m-1
can therefore be rewritteR(z)=> a,z"* +a,z"+> a,z". The variablek’ can be
k=0 k'=0

renamedk and the two sums can be regrouped since now tney $imilar bounds.

m-1

P(z):Zak(z"‘k+zk)+amzm (22)

k=0

Since the roots are to be of the fomn= €%, none of the roots will be zero and equation
(22) can be factored by" which gives:

m-1

tgee[Sale e e (S)

k=0

Moreover given that]"™ +

=z :Zcos((m—k)ﬁj), instead of solving foz in P(z),
m-1

the equationR(cos(6)) =" &, co§(m-k)&)+a, can be used as a replacement.

k=0
First R(cos(é’)) need to be expressed as a polynomiatas(§) using Chebyshev’s

polynomials T, (x) , which are defined so thaf (cos(x)) = co§nx) . The recursive
formulation of Chebyshev's polynomials isT,(x)=1 , T,(x)=x and

T.o (X) = 2XT,.. (%) =T, (X).-

m-1

Therefore R(cos(6)) =Y. AT, (co$d))+a, and a change of variablg=cos(6)
k=0

can be applied to obtain the final form of the pagial to solve.

m-

R(y)= Z_fZakTm_k (v)+a, (23)

It is interesting to note that Prony’s method fegpanded fromm unknown frequencies
to p=2m complex unknowns, but that (23) has brought ikiiacm unknowns.

The procedure to solve (23) is to expand the Chedwpolynomials with the recursive
formulas, multiply them by their respectiag coefficients, and sum all the results to get

the final polynomiaIR(y). When this is done any polynomial root solver barused to
get they values, finally the frequencie(m)ql;m]], are extracted by =cos*(y,).

Again, although some source code is provided inaghgendix, solving equation (23) is
outside the scope of this tutorial but should reiakblocker for the reader since solving
polynomials is well addressed in the literatures &4, [7], [8] and [8] for example.

4. Finding the amplitudes and phases

a. Finding the amplitudega;)iu[[l;m]] and(ﬁi)iiﬂl;m]]

Looking back at equation (3)g(x) :iai cos(cqx)+i,8i sifax)), at this stage the
i=1 i=1

frequencies that were required have been determidely the amplitudes for the cosine
and sine series are left to be found.

The Least-Squares method is again going to be sse¢dat to minimize the sum of the
square errors betweefi and g on the N data samples. As in section 3.d an error

function to be minimized is defined as follow:

N

e(a,8)=(9(¥)~f () (24)

x=1

And using (3) e(a,ﬁ)=i(iq cos(a)lx)+;ml,8i sifax) - f (X)J2 (25)

x=1\ i=1

In order to minimize equation (25), a pofat,,...,a,,.5.....B,) need to be found at
which Oe(a,,...,a,,,B,....,B8,) = 0, which is equivalent as to solve for glt

0e(ay,... .0, By Bu)

oo =0 (26)
and oe(a,,....a,. B, .By) “o 27
3B

From (25) aaTG = ZZN: cofw x)(zm: a; co$wx)+ Zm:ﬁi sifyx) - f (x)j (28)

and 6,8 Zzlsm(wx)(Za cogyx) + Z,B siffgx) - f ()j

(29)

Therefore the following equations that are obtaibgdswapping the sums signs and by
moving all the terms withf (x) on the right hand side of the equation need tsabesd

m N m

ga,Zcos(wx) cogwx) +Z,6’Z cofw x) sifwyx) =

czéa) x) (x) (30)
and ZaZsm(wx)cos(cqx +iﬁz sn(a)x) sificgx) = S|(1(u) (x) (31)

Again both (30) and (31) define a linear systend e algorithm to solve this system is

strictly identical to the one used in section 3ndl @equires the use of the same source
code provided in the Appendix of this document.

- cosa) (¥

a. icos(wmx) f (x)
M ﬁm = (32)
L] Sosin(ax) f (49

x=1

_gsin(wmx) f(x)

For space sake, let{x) =cos(x) ands(x) =sin(x) and M is defined as below

Sl o) el - Bderd fo)
teloghler) - L) Edegd) Bderd fond

M:x—l x=1

tader) tdep) o) Ldor o) 2 bop) bl
o) - o) Slanddear) Edard ford)

and phase$g,)

b. Finding the amplitude§p,).

idL;m] id[3;m]

This is the final and easiest step in this wholertal. Values of(a;)'D[[l'm]]’ ('B)iD[[l;m]]

have been determined, and from sectiom 2 p, cos(¢) and g = S|n(¢)

Thereforep =./a’+ 3% and ¢, =tan (fJ And finally everything that was needed

in equation (1) ¢(x) :Zm:pi cos(wx+¢,)) has been found.
i=1

5. Conclusion

This tutorial has fully detailed the basic trigoretnc fitting methods that were briefly
described in [1] and [2]. Those methods have assrdrawback. Despite what seems a
correct and reasonable symbolic analysis, the ipedabumerical implementation can
suffer from several numerical precision issues.

One of the common numerical issues is related eéontbethod used in both sections 3.d
and 4.a to solve an over-determined, over-congdasystem of linear equations, for
which we have more equations than unknowns to stiverder to solve this issue both
sections 3.d and 4.a have used the same LeasteSqi&) method using what are called
the normal equations which are well known to beléfined and not ideal for numerical
implementations. The reader of this tutorial inséee to address this issue is encouraged
to follow-up with the topic of Singular Value Decposition (SVD) described in [5] and

9]

Another common numerical issue is related to the ofslimited machine precision
floating point implementations. Trying to use th® &n very large sets of data even with
SVD methods can very easily exhibit the limits loé implementation accuracy and give
results that are very unsatisfying. A reasonablekaround that can be used in some
cases is to reduce the sampling frequency of the skt used, at the expense of the
accuracy of the approximation and solution.

The last common numerical issue to be mentionethis conclusion is related to the
Prony method itself. Firstly the method itself ist guaranteed to be optimal since
minimizing the error on polynomial coefficients doaot insure to find optimal
frequencies, and secondly the method has known mecmhassues when the signal
analyzed is composed of frequencies very closexth ether, or when the signal has a
non negligible noise component.

Finally trigonometric curve fitting is not a fulgolved problem. There exist several other
trigonometric curve fitting methods such as Piskpés) method, the Matrix Pencil
method, MUSIC, TAM, ESPRIT, and KT methods. Thedezainterested to pursue
further investigations related to the area of tnigmetric curve fitting is encouraged to
read [10] and [11] for more details.

The positive side of this incomplete solution iattthere is always an interest to discover
new trigonometric curve fitting algorithms, and tleader of this tutorial can take part in
this research effort.

6. References

1. J.M Hurst, The Profit Magic of Stock Transactiiming, Traders Press (2000)

2. C.E. Cleeton, The Art of Independent Investiiggntice-Hall (1976)

3. G. Riche de Prony, Essai éxperimental et amplgtiJournal de I'Ecole Polytechnique
(1795). Also available at the addrédtp://www.polytech.unice.fr/~leroux/PRONY.pdf
4. R. Barrett et al., Templates for the Solutibhioear Systems: Building Blocks for
Iterative Methods, 2nd Edition, SIAM (1994)

5. W.H. Press et al., Numerical Recipes in C++: Ahteof Scientific Computing,
Cambridge University Press (2002)

6. J.P. Pante, Computer Algorithms in Power Sysiealysis, World Wide Web site at
the addreshttp://www.geocities.com/SiliconValley/Lab/4223/fdach03.htm| (1999)
7. Durand-Kerner method, World Wide Web site atatidress
http://en.wikipedia.org/wiki/Durand-Kerner_method

8. L. Volpi, Practical Methods for Roots Findingowd Wide Web site at the address
http://digilander.libero.it/foxes/poly/Polynomialkeros.pdf (2006)

9. G.H. Golub et al., Matrix Computations, Johngkos University Press, (1996)

10. R. Badeau, High Resolution Methods for Estingatind Tracking Modulated
Sinusoids, World Wide Web site at the address
http://pastel.paristech.org/1234/01/Thesis. [(2005)

11. A. Van der Veen, Subspace Based Signal Analysigy Singular Value
Decomposition, Proceedings IEEE, vol. 81, (1993)

7. Appendix. Non optimized C++ code.

#include <vector>
#include <complex>

using namespace std;

typedef complex<double> COMPLEX;
const double kPl = 3.14159265358979323846;

10

/l Returns in vector all roots of input polynomial using Durand-Kerner / Weirstrass method

vector<COMPLEX> PolyRoots(vector<double> &poly, const double eps, const long maxliter, const double
setupRadius)

{
size_t degree = poly.size() - 1;
vector<COMPLEX> roots(degree);
for (size_ti=0;i<degree; i++)
{
roots[i | = polar(setupRadius, 2.0 * i * kPI / degree);
}
double error = eps;
for (long iter = maxlter; 0 <= iter, eps <= error; iter--)
{
error = 0.0;
for (size_ti=0;i<degree; i++)
{
COMPLEX divisor(poly[degree]);
COMPLEX delta(poly[degree]);
for ('size_tj=0;j < degree; j++)
if (il=))
{
divisor *=roots[i] - roots[j J;
delta = delta * roots[i] + poly[degree -1 -j];
delta /= divisor;
roots[i] -= delta;
error = max(error, abs(delta));
}
}
return roots;
}

/I Returns the inverse of input matrix using full pivot Gauss Jordan method

vector<double> InverseMatrix(vector<double> M, const long n))

{

vector<bool> freelndices(n, true);
vector<double>res(n*n, 0.0);
for (longi=0;i<n;i++)

{

}
for (long p=0; p<n; p++)

res[i*n+i]=1.0;

double pivot = 0.0;

long mi, mj;

for (longi=0;i<n;i++)
{

for (long j=0;j<n;j++)

if ((fabs(pivot) <fabs(M[i*n+j]))
&& freelndices[i] && freelndices[j])
{

mi=i;

mj =j;

11

pivot=M[i*n+j];

}

freelndices[mj] = false;

for (longj=0;j<n;j++)
swap(M[mi*n+jl, M[mj*n+j]);
swap(res[mi*n+j], resimj*n+j]);
M[mj * n +j] /= pivot;
res[mj * n + j] /= pivot;

}

for (longi=0;i<n;i++)
if (il=mj)
{

double scale=M[i*n +m;j];
for (longj=0;j<n;j++)

M[i*n+j]-=scale*M[mj*n+j];
res[i*n+j]-=scale*res[mj*n+j];

}

return res;

}

/I Small utility functions for Prony algorithm

double Sgk(const vector<double> &values, const long m, const long x, const long i)

if (i'=m)
return values[x +i] + values[x +2*m - i];
}
else
{
return values[x + m J;
}
}
double CosSin(const std::vector<double> &frequencies, const long m, const long x, const long i)
if (i<m)
return sin(frequencies[i]* x);
}
else
{
return cos(frequencies[i-m]* x);
}

}

vector<double> MultiplyMatrixVector(const vector<double> &M, const long n, const vector<double> &V)

{

vector<double> res(n, 0.0);
for (longi=0;i<n;i++)

}

for (long j=0;j<n;j++)
res[i]+=M[i*n+j]1*V[j];

}

return res;

/l Returns up to m frequencies, amplitudes and phases from input data vector

void PronyFit(const vector<double> &values, const long &m, vector<double> &frequenciesRad,
vector<double> &litudes, vector<double> &phases)

{

longp=2*m;
long n = static_cast<long>(values.size());

/Il CREATE VECTOR AND MATRIX TO GET POLYNOMIAL COEFFICIENTS
vector<double> A(m *m, 0.0);
vector<double> B(m, 0.0);
for (longi=0;i<m;i++)
for (long x=0; x < n-p; x++)
for (long j=0;j<m;j++)
A[i*m+j]+=Sgk(values, m, x,i+1)*Sgk(values, m, x,j+1);
E[i]-= Sgk(values, m, x, i + 1) * Sgk(values, m, x, 0);
}

vector<double> inverseA = InverseMatrix(A, m);
vector<double> X = MultiplyMatrixVector(inverseA, m, B);

/I CREATE LINEAR COMBINATION OF CHEBYSHEV POLYNOMIALS

vector<double> Tnm2(1,1.0);// 1

double coeffsTnm1[] ={0.0,1.0}; // X

vector<double> Tnm1(coeffsTnm1, coeffsTnm1 + sizeof(coeffsTnm1) / sizeof(double));
double coeffsP[] ={X[m-1],20*X[m-2]};

vector<double> P(coeffsP, coeffsP + sizeof(coeffsP) / sizeof(double));
for(longi=m-3;-1<=i;i-)

vector<double> Tn(Tnm1l.size() + 1, 0.0);
for ('size_tj=0;j < Tnml.size(); j++)

Tn[j+1]+=2.0*Tnml[j];
for ('size_tj=0; j < Tnm2.size(); j++)

Tn[j]-=Tnm2[j];

Tnm2 = Tnm1;
Tnml="Tn;
double k = 2.0;

if(0<=i)

k*=X[i1;
}

for (size_tj = 0; j < Tn.size(); j++)
Tn[j]*=k;
for (size_tj=0; j < P.size(); j++)

} T[j]1+=P[j];

P=Tn;
}

/ SOLVE FOR COSINE OF FREQUENCIES

const double epsilon = 1.e-6;
vector<COMPLEX> roots = PolyRoots(P, epsilon, 100, 2.0);

/I CONVERT TO FREQUENCIES IF ROOTS ARE VALID
for(longi=0;i<m;i++)
if ((fabs(roots[i].imag()) < epsilon) && (fabs(roots[i].real()) < 1.0 + epsilon))
{ frequenciesRad.push_back(acos(max(min(roots[i].real(), 1.0),-1.0)));
}
/I CREATE VECTOR AND MATRIX TO GET AMPLITUDES AND PHASES

long nbFreq = static_cast<long>(frequenciesRad.size());
long m2 = 2 * nbFreq;

vector<double> A2(m2 * m2, 0.0);
vector<double> B2(m2, 0.0);
for (longi=0;i<m2;i++)

{ for (long x = 0; X < n; x++)
t for (long j=0;j< m2; j++)
A2[i*m2 +] += CosSin(frequenciesRad, nbFreq, X, i)
* CosSin(frequenciesRad, nbFreq, x,);
B2[i] += CosSin(frequenciesRad, nbFreq, x, i) * values[x ;
} }

vector<double> inverseA2 = InverseMatrix(A2, m2);
vector<double> X2 = MultiplyMatrixVector(inverseA2, m2, B2);

/I CONVERT TO FINAL AMPLITUDE AND PHASES

for (long i =0; i< nbFreq; i++)

{
amplitudes.push_back(sqrt(X2[i]* X2[i]+ X2[i+ nbFreq]* X2[i+ nbFreq]));
phases.push_back(-atan2(X2[i], X2[i + nbFreq]));

14

/I Example program using PronyFit

int main(int argc, char* argv(])

{

vector<double> originalData(32, 0.0);

vector<double> originalFrequencies;
originalFrequencies.push_back(0.3 * 2.0 * kPl / originalData.size());
originalFrequencies.push_back(1.7 * 2.0 * kPI / originalData.size());
originalFrequencies.push_back(3.5 * 2.0 * kPI / originalData.size());
double originalAmplitudes[] = { 3.0, 5.0, 0.7 };

double originalPhases[] = { 0.0, 1.0, 2.0 };

for (size_ti=0; i< originalData.size(); i++)

}

for (size_t j = 0; j < originalFrequencies.size(); j++)

originalDatal i] += originalAmplitudes j] * cos(originalFrequencies[j] * i
+ originalPhases[j1);

vector<double> pronyFrequencies;

vector<double> pronyAmplitudes;

vector<double> pronyPhases;

PronyFit(originalData, 3, pronyFrequencies, pronyAmplitudes, pronyPhases);

vector<double> pronyData(originalData.size(), 0.0);
for (size_ti = 0; i < pronyData.size(); i++)

{

}

return O;

for (size_t j = 0; j < pronyFrequencies.size(); j++)
pronyData][i] += pronyAmplitudes] j] * cos(pronyFrequencies[j] * i
+ pronyPhases[j]);

}

double error = fabs(pronyData[i] - originalData[i]);
printf("Original: % .6f / Prony: % .6f / Error: % .6f\n", originalData[i], pronyData[i], error);

15

