
 1

A tutorial on trigonometric curve fitting

By Cedrick Collomb1

Abstract. This tutorial introduces the concept and usefulness of approximating a signal by a
sum of sinusoidal functions hopefully in a simple manner intelligible to any reader with
minimal mathematical and engineering skills. The Prony algorithm for trigonometric curve
fitting is explained in full detail, formulas are derived and every step is purposely made
unnecessarily detailed for ease of understanding. Source code is provided as a way to skip the
potential formula obfuscation in order to help the reader implement and use the ideas behind
this tutorial immediately after reading this document.

1. Introduction

Joseph Fourier changed forever the mathematics and science landscape when he
introduced to the world the fact that periodic functions could be expressed as
trigonometric series, his discovery was so astonishing at the time that even some the most
brilliant mathematicians of that period had some difficulties accepting his surprising
results. Fourier’s theory generated interest to further attempt to break down a function as
a sum of simple sinusoidal waves and thus gave rise to the field of Harmonic Analysis,
which has major implications in a wide range of areas from audio analysis and synthesis
to stock market analysis and prediction [1][2].

The discrete Fourier transform, a process to transform series of sample data to
frequencies, is unfortunately tightly linked to its data window, which raise the issue of
resolution constraints. New methods called high resolution methods have to be used in
order to decompose signals with arbitrary frequencies. There exists a method invented by
Prony [3] prior to Fourier’s discovery that can address this challenge, and that method is
presented in this document.

The rest of the tutorial is organized as follow: Section 2 introduces the basic concept of
trigonometric fitting. Section 3 explains how to solve for frequencies using Prony’s
method. Section 4 explains how to find the amplitudes and phases. Section 5 concludes
this tutorial.

2. Trigonometric fitting

Trigonometric fitting is a method to approximate a function f by series of trigonometric
functions. The approximation g of f can be written

 () ()
1

cos
m

i i i
i

g x xρ ω ϕ
=

= +∑ (1)

Wherem is the number of terms we want to approximate f with, iρ is the amplitude, iω

is the frequency and iϕ is the amplitude of the ith cosine function.

1 ccollomb@yahoo.com / http://ccollomb.free.fr/

 2

To transform the previous equation we need to use the following trigonometric identity.

 () () () () ()cos cos cos sin sina b a b a b+ = − (2)

Using identity (2) we can rewrite (1) as

() () () () ()

() () () ()
1

1 1

cos cos sin sin

cos cos sin sin

m

i i i i i
i

m m

i i i i i i
i i

g x x x

x x

ρ ω ϕ ω ϕ

ρ ϕ ω ρ ϕ ω

=

= =

= −  

= −

∑

∑ ∑

Therefore g can also be written interchangeably with (1) as follow:

 () () ()
1 1

cos sin
m m

i i i i
i i

g x x xα ω β ω
= =

= +∑ ∑ (3)

And in this case ()cosi i iα ρ ϕ= and ()sini i iβ ρ ϕ= − .

It is to be noted that only f is known at this stage. A value of m has to be decided
depending on the problem at hand or accuracy of approximation desired. If equation (1)
is used ()

� �1;i i m
ρ

∈
, ()

� �1;i i m
ω

∈
 and ()

� �1;i i m
ϕ

∈
 have to be determined. If equation (3) is used

()
� �1;i i m

ω
∈

, ()
� �1;i i m

α
∈

 and ()
� �1;i i m

β
∈

 have to be determined.

3. Finding the frequencies () � �1;i i m

ω ∈

a. Prony’s reformulation of the problem

Let 2p m= , the Prony method starts by replacing (3) by the following equation:

 ()
1

p
x

j j
j

g x zγ
=

=∑ (4)

Where jγ are complex numbers, ji

jz e θ= , with jθ real numbers and 2 1i = − .

If equation (4) can be solved and constrained so that to get couples of conjugate jγ and

jz , equation (4) can be transformed back into equation (3).

For all index j let there exists an index k so that k jγ γ= and k jz z= then it results that

() ()2Re 2Re jixx x x x x x x
j j k k j j j j j j j j j j jz z z z z z z e θγ γ γ γ γ γ γ γ+ = + = + = = and therefore

 () () () ()()2 Re cos Im sinx x
j j k k j j j jz z x xγ γ γ θ γ θ+ = − (5)

 3

b. Prony’s polynomial

Prony’s original idea to solve (4) is to introduce the polynomial ()P z that has all the

()
� �1;j j p

z
∈

 for roots.

 () ()
1

p

j
j

P z z z
=

= −∏ (6)

There exists ()
� �0;k k p

a
∈

 so that ()
0

p
p k

k
k

P z a z −

=

=∑ (7)

By definition () 0jP z = therefore
0

0
p

p k
k j

k

a z −

=

=∑ (8)

Also by definition ji

jz e θ= therefore
1

ji

j
j

z e
z

θ−= = , and thus
1

0
j

P
z

 
=  

 
. Which leads to

the following equation:
0 0 0

1 1
0

kp p p
j k

k k k jp k p p
k k kj j j

z
a a a z

z z z−
= = =

= = =∑ ∑ ∑ .

Therefore
0

0
p

k
k j

k

a z
=

=∑ (9)

The polynomial ()
0

p
k

k
k

Q z a z
=

=∑ in (9) has p roots as has ()P z , moreover they are all

equal to the roots of ()P z . Therefore () ()Q z P zλ= . Rewriting ()
0

p
k

p k
k

P z a z−
=

=∑ gives:

For all � �0;k p∈ k p ka aλ −= (10)

Considering that ()
� �1;j j p

z
∈

 contain couples of roots of the form ji

jz e θ= , ()P z can be

transformed as follow: () ()() ()()2

1 1

j j j j j j

m m
i i i i i i

j j

P z z e z e z e e z e eθ θ θ θ θ θ− − −

= =

= − − = − + +∏ ∏ .

Therefore () ()()2

1

2cos 1
m

j
j

P z z zθ
=

= − +∏ (11)

It follows that the ()

� �0;k k p
a

∈
 are real and that 0 1a = and 1pa = , therefore that 1λ = .

Thus � �0;k p∀ ∈ k p ka a −= (12)

 4

c. Identifying Prony’s polynomial coefficients

The next step is to find an equation that will help determine the ()

� �0;k k p
a

∈
 coefficients.

Using (4), (9) and the fact that () 0jQ z = gives:

() ()
0 0 1 1 0 1

p p p p p p
x k x k x

k k j j j j k j j j j
k k j j k j

a g x k a z z a z z Q zγ γ γ+

= = = = = =

+ = = =∑ ∑ ∑ ∑ ∑ ∑

Therefore ()
0

0
p

k
k

a g x k
=

+ =∑ (13)

Using (12) and (13) gets () ()() ()
1

0

0
m

k m
k

a g x k g x p k a g x m
−

=

+ + + − + + =∑ and since

0 1a = , the following result defining ()
� �1;k k m

a
∈

 can be reached:

 () () ()() () ()
1

1

m

m k
k

a g x m a g x k g x p k g x g x p
−

=

+ + + + + − = − − +∑ (14)

The approximation g of f is done at N regularly spaced samples, with p N≤ . Most of
the time when N is large enough, equation (14) defines an over determined, over
constrained linear equation, because it defines N p− equations for only m unknown
variables. There are several different ways to solve those linear systems. A simple and
common method that is described in this tutorial is the Least-Squares (LS) method.

d. Least-Squares method to identify the ()
� �1;k k m

a
∈

 coefficients

Since (14) gives too much data for not enough unknowns, an error function which is the
sum of the square of residuals between the left and right sides of equation (14), allows to
regroup everything under one sum and one line.

 () () () ()()
21

1, ,
1 0

N p m

m m k
x k

e a a a g x m a g x k g x p k
− −

= =

 = + + + + + − 
 

∑ ∑⋯
 (15)

To minimize (15), the point ()1, , ma a⋯ at which ()1, , 0me a a∇ =⋯
 need to be found. It is

equivalent to solve for all j the following partial derivative equations:

()1, , 0m

j

e a a

a

∂
=

∂
⋯ (16)

 5

To simplify the derivations lets define () () (),g kS x g x k g x p k= + + + − , equation (15)

can therefore be rewritten as () () ()
21

1, , ,
1 0

N p m

m m k g k
x k

e a a a g x m a S x
− −

= =

 = + + 
 

∑ ∑⋯

It results that () () ()
1

, ,
1 0

2
N p m

g j m k g k
x kj

e
S x a g x m a S x

a

− −

= =

∂  = + + ∂  
∑ ∑ (17)

And that () () ()
1

,
1 0

2
N p m

m k g k
x km

e
g x m a g x m a S x

a

− −

= =

∂  = + + + ∂  
∑ ∑ (18)

Using (16) and (17) the following linear equations for � �1; 1j m∈ − can be found

 () () () () ()
1

, , ,0 ,
1 1 1

N p N pm

g j m k g k g g j
x k x

S x a g x m a S x S x S x
− −−

= = =

 + + = − 
 

∑ ∑ ∑ (19)

Using (16) and (18) the following linear equations for j m= can be found

 () () () () ()
1

, ,0
1 1 1

N p N pm

m k g k g
x k x

g x m a g x m a S x S x g x m
− −−

= = =

 + + + = − + 
 

∑ ∑ ∑ (20)

Finally equations (19) and (20) can be put in matrix form.

() ()

() ()

() ()

,0 ,1
1

1

1 ,0 , 1
1

,0
1

N p

g g
x

N p

m g g m
x

m N p

g
x

S x S x

a

M
a S x S x

a

S x g x m

−

=

−

− −
=

−

=

 
 
  
  
   = −   
  
  
 +
  

∑

∑

∑

⋮
⋮

 (21)

With

() () () () () ()

() () () () () ()

() () () () () ()

,1 ,1 , 1 ,1 ,1
1 1 1

,1 , 1 , 1 , 1 , 1
1 1 1

,1 , 1
1 1 1

N p N p N p

g g g m g g
x x x

N p N p N p

g g m g m g m g m
x x x

N p N p N p

g g m
x x x

S x S x S x S x g x m S x

M
S x S x S x S x g x m S x

S x g x m S x g x m g x m g x m

− − −

−
= = =

− − −

− − − −
= = =

− − −

−
= = =

 
+ 

 
 
 =  +
 
 
 + + + +
  

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑

⋯

⋮ ⋱ ⋮ ⋮

⋯

⋯

 6

Although some source code is provided in the appendix, solving equation (21) is outside
the scope of this tutorial but should not be a blocker for the reader since solving linear
systems is well addressed in the literature; see [4], [5] and [6] for example.

e. Solving the polynomial for frequencies

This is the last part of the puzzle. At this stage the polynomial and its coefficients can be

determined, however nothing guarantees that the roots will take the form ji

jz e θ= , nor

that their conjugate will also be roots as desired initially. The necessary conditions to
establish constraints on the ()

� �1;k k m
a

∈
 have not been shown to be sufficient. Instead of

doing so, stronger necessary conditions are going to be derived by transforming the
polynomial in an alternative form.

Decomposing (8) gives ()
1

0 1

pm
p k m p k

k m k
k k m

P z a z a z a z
−

− −

= = +

= + +∑ ∑ , and using (12), it becomes

()
1

0 1

pm
p k m p k

k m p k
k k m

P z a z a z a z
−

− −
−

= = +

= + +∑ ∑ . Changing variables with k p k′ = − , gives

k p k ′= − and k′ goes from 0p p− = to (1) 2 1 1p m m m m− + = − − = − . The equation

can therefore be rewritten ()
1 1

0 0

m m
p k m k

k m k
k k

P z a z a z a z
− −

′−
′

′= =

= + +∑ ∑ . The variable k′ can be

renamed k and the two sums can be regrouped since now they have similar bounds.

 () ()
1

0

m
p k k m

k m
k

P z a z z a z
−

−

=

= + +∑ (22)

Since the roots are to be of the form ji

jz e θ= , none of the roots will be zero and equation

(22) can be factored by mz which gives:

() ()
1 1

0 0

1m m
m m k k m m m k

k m k mm k
k k

P z z a z z a z a z a
z

− −
− − −

−
= =

    = + + = + +   
    

∑ ∑

Moreover given that ()()1
2cosm k

j jm k
j

z m k
z

θ−
−+ = − , instead of solving for z in ()P z ,

the equation ()() ()()
1

0

cos 2 cos
m

k m
k

R a m k aθ θ
−

=

= − +∑ can be used as a replacement.

First ()()cosR θ need to be expressed as a polynomial of ()cos θ using Chebyshev’s

polynomials ()nT x , which are defined so that ()() ()cos cosnT x nx= . The recursive

formulation of Chebyshev’s polynomials is ()0 1T x = , ()1T x x= and

() () ()2 12n n nT x xT x T x+ += − .

 7

Therefore ()() ()()
1

0

cos 2 cos
m

k m k m
k

R a T aθ θ
−

−
=

= +∑ and a change of variable ()cosy θ=

can be applied to obtain the final form of the polynomial to solve.

 () ()
1

0

2
m

k m k m
k

R y a T y a
−

−
=

= +∑ (23)

It is interesting to note that Prony’s method first expanded from m unknown frequencies
to 2p m= complex unknowns, but that (23) has brought it back to m unknowns.

The procedure to solve (23) is to expand the Chebyshev polynomials with the recursive
formulas, multiply them by their respective ka coefficients, and sum all the results to get

the final polynomial ()R y . When this is done any polynomial root solver can be used to

get the y values, finally the frequencies () � �1;i i m
ω ∈ , are extracted by ()1cosi iw y−= .

Again, although some source code is provided in the appendix, solving equation (23) is
outside the scope of this tutorial but should not be a blocker for the reader since solving
polynomials is well addressed in the literature; see [5], [7], [8] and [8] for example.

4. Finding the amplitudes and phases

a. Finding the amplitudes () � �1;i i m
α ∈ and () � �1;i i m

β ∈

Looking back at equation (3) (() () ()
1 1

cos sin
m m

i i i i
i i

g x x xα ω β ω
= =

= +∑ ∑), at this stage the

frequencies that were required have been determined. Only the amplitudes for the cosine
and sine series are left to be found.

The Least-Squares method is again going to be used so that to minimize the sum of the
square errors between f and g on the N data samples. As in section 3.d an error
function to be minimized is defined as follow:

 () () ()()2

1

,
N

x

e g x f xα β
=

= −∑ (24)

And using (3) () () () ()
2

1 1 1

, cos sin
N m m

i i i i
x i i

e x x f xα β α ω β ω
= = =

 = + − 
 

∑ ∑ ∑ (25)

In order to minimize equation (25), a point ()1 1, , , , ,m mα α β β… … need to be found at

which ()1 1, , , , , 0m me α α β β∇ =… … , which is equivalent as to solve for all j :

 8

()1 1, , , , ,

0m m

j

e α α β β
α

∂
=

∂
… …

 (26)

and
()1 1, , , , ,

0m m

j

e α α β β
β

∂
=

∂
… …

 (27)

From (25) () () () ()
1 1 1

2 cos cos sin
N m m

j i i i i
x i ij

e
x x x f xω α ω β ω

α = = =

∂  = + − ∂  
∑ ∑ ∑ (28)

and () () () ()
1 1 1

2 sin cos sin
N m m

j i i i i
x i ij

e
x x x f xω α ω β ω

β = = =

∂  = + − ∂  
∑ ∑ ∑ (29)

Therefore the following equations that are obtained by swapping the sums signs and by
moving all the terms with ()f x on the right hand side of the equation need to be solved.

 () () () () () ()
1 1 1 1 1

cos cos cos sin cos
m N m N N

i j i i j i j
i x i x x

x x x x x f xα ω ω β ω ω ω
= = = = =

+ =∑ ∑ ∑ ∑ ∑ (30)

and () () () () () ()
1 1 1 1 1

sin cos sin sin sin
m N m N N

i j i i j i j
i x i x x

x x x x x f xα ω ω β ω ω ω
= = = = =

+ =∑ ∑ ∑ ∑ ∑ (31)

Again both (30) and (31) define a linear system, and the algorithm to solve this system is
strictly identical to the one used in section 3.d and requires the use of the same source
code provided in the Appendix of this document.

() ()

() ()

() ()

() ()

1
1

1

1

1
1

1

1

cos

cos

sin

sin

N

x

N

m
xm

N

x

m

N

m
x

x f x

x f x

M

x f x

x f x

ω

α

ω
α
β

ω

β

ω

=

=

=

=

 
 
 

   
   
   
   

=   
   
   
   
    

 
 
 

∑

∑

∑

∑

⋮

⋮

⋮

⋮

 (32)

For space sake, let () ()cosc x x= and () ()sins x x= and M is defined as below.

 9

() () () () () () () ()

() () () () () () () ()
() () () () () () () ()

() () () ()

1 1 1 1

1 1 1 1

1 1 1 1

1

c c c c c s c s
1 1 1 1 1 1

c c c c c s c s
1 1

s c s c s s s s
1 1 1 1 1 1

s c s c
1

N N N N

x x x x

N N N N

x x x x

N N N N

x x x x

N

x x

x x x x x x x x
m m

x x x x x x x x
m m m m m m

x x x x x x x x
m m

x x x x
m m m

M

ω ω ω ω ω ω ω ω

ω ω ω ω ω ω ω ω

ω ω ω ω ω ω ω ω

ω ω ω ω

∑ ∑ ∑ ∑
= = = =

∑ ∑ ∑ ∑
= = = =

∑ ∑ ∑ ∑
= = = =

∑
= =

=

⋯ ⋯

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

⋯ ⋯

⋯ ⋯

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

⋯ () () () ()
1 1 1

s s s s
1

N N N

x x
x x x x

m m m
ω ω ω ω∑ ∑ ∑

= =

 
 
 
 
 
 
 
 
 
 
 
  

⋯

b. Finding the amplitudes () � �1;i i m

ρ ∈ and phases () � �1;i i m
ϕ ∈

This is the final and easiest step in this whole tutorial. Values of () � �1;i i m

α ∈ , () � �1;i i m
β ∈

have been determined, and from section 2: ()cosi i iα ρ ϕ= and ()sini i iβ ρ ϕ= − .

Therefore 2 2
i i iρ α β= + and 1tan i

i
i

βϕ
α

−  −=  
 

. And finally everything that was needed

in equation (1) (() ()
1

cos
m

i i i
i

g x xρ ω ϕ
=

= +∑) has been found.

5. Conclusion

This tutorial has fully detailed the basic trigonometric fitting methods that were briefly
described in [1] and [2]. Those methods have a serious drawback. Despite what seems a
correct and reasonable symbolic analysis, the practical numerical implementation can
suffer from several numerical precision issues.

One of the common numerical issues is related to the method used in both sections 3.d
and 4.a to solve an over-determined, over-constrained system of linear equations, for
which we have more equations than unknowns to solve. In order to solve this issue both
sections 3.d and 4.a have used the same Least-Squares (LS) method using what are called
the normal equations which are well known to be ill-defined and not ideal for numerical
implementations. The reader of this tutorial interested to address this issue is encouraged
to follow-up with the topic of Singular Value Decomposition (SVD) described in [5] and
[9].

Another common numerical issue is related to the use of limited machine precision
floating point implementations. Trying to use the LS on very large sets of data even with
SVD methods can very easily exhibit the limits of the implementation accuracy and give
results that are very unsatisfying. A reasonable workaround that can be used in some
cases is to reduce the sampling frequency of the data set used, at the expense of the
accuracy of the approximation and solution.

 10

The last common numerical issue to be mentioned in this conclusion is related to the
Prony method itself. Firstly the method itself is not guaranteed to be optimal since
minimizing the error on polynomial coefficients does not insure to find optimal
frequencies, and secondly the method has known numerical issues when the signal
analyzed is composed of frequencies very close to each other, or when the signal has a
non negligible noise component.

Finally trigonometric curve fitting is not a fully solved problem. There exist several other
trigonometric curve fitting methods such as Pisarenko’s method, the Matrix Pencil
method, MUSIC, TAM, ESPRIT, and KT methods. The reader interested to pursue
further investigations related to the area of trigonometric curve fitting is encouraged to
read [10] and [11] for more details.

The positive side of this incomplete solution is that there is always an interest to discover
new trigonometric curve fitting algorithms, and the reader of this tutorial can take part in
this research effort.

6. References

1. J.M Hurst, The Profit Magic of Stock Transaction Timing, Traders Press (2000)
2. C.E. Cleeton, The Art of Independent Investing, Prentice-Hall (1976)
3. G. Riche de Prony, Essai éxperimental et analytique, Journal de l'École Polytechnique
(1795). Also available at the address http://www.polytech.unice.fr/~leroux/PRONY.pdf
4. R. Barrett et al., Templates for the Solution of Linear Systems: Building Blocks for
Iterative Methods, 2nd Edition, SIAM (1994)
5. W.H. Press et al., Numerical Recipes in C++: The Art of Scientific Computing,
Cambridge University Press (2002)
6. J.P. Pante, Computer Algorithms in Power System Analysis, World Wide Web site at
the address http://www.geocities.com/SiliconValley/Lab/4223/fault/ach03.html, (1999)
7. Durand-Kerner method, World Wide Web site at the address
http://en.wikipedia.org/wiki/Durand-Kerner_method
8. L. Volpi, Practical Methods for Roots Finding, World Wide Web site at the address
http://digilander.libero.it/foxes/poly/Polynomial_zeros.pdf, (2006)
9. G.H. Golub et al., Matrix Computations, Johns Hopkins University Press, (1996)
10. R. Badeau, High Resolution Methods for Estimating and Tracking Modulated
Sinusoids, World Wide Web site at the address
http://pastel.paristech.org/1234/01/Thesis.pdf, (2005)
11. A. Van der Veen, Subspace Based Signal Analysis using Singular Value
Decomposition, Proceedings IEEE, vol. 81, (1993)

7. Appendix. Non optimized C++ code.

#include <vector>
#include <complex>

using namespace std;
typedef complex<double> COMPLEX;
const double kPI = 3.14159265358979323846;

 11

// Returns in vector all roots of input polynomial using Durand-Kerner / Weirstrass method

vector<COMPLEX> PolyRoots(vector<double> &poly, const double eps, const long maxIter, const double
setupRadius)
{
 size_t degree = poly.size() - 1;
 vector<COMPLEX> roots(degree);
 for (size_t i = 0; i < degree; i++)
 {
 roots[i] = polar(setupRadius, 2.0 * i * kPI / degree);
 }

double error = eps;
 for (long iter = maxIter; 0 <= iter, eps <= error; iter--)
 {
 error = 0.0;
 for (size_t i = 0; i < degree; i++)
 {
 COMPLEX divisor(poly[degree]);
 COMPLEX delta(poly[degree]);
 for (size_t j = 0; j < degree; j++)
 {
 if (i != j)
 {
 divisor *= roots[i] - roots[j];
 }
 delta = delta * roots[i] + poly[degree - 1 - j];
 }
 delta /= divisor;
 roots[i] -= delta;
 error = max(error, abs(delta));
 }
 }

 return roots;
}

// Returns the inverse of input matrix using full pivot Gauss Jordan method

vector<double> InverseMatrix(vector<double> M, const long n)
{
vector<bool> freeIndices(n, true);

 vector<double> res(n * n, 0.0);
 for (long i = 0; i < n; i++)
 {
 res[i * n + i] = 1.0;
 }

 for (long p = 0; p < n; p++)
 {
 double pivot = 0.0;
 long mi, mj;
 for (long i = 0; i < n; i++)
 {
 for (long j = 0; j < n; j++)
 {
 if ((fabs(pivot) < fabs(M[i * n + j]))

 && freeIndices[i] && freeIndices[j])
 {
 mi = i;
 mj = j;

 12

 pivot = M[i * n + j];
 }
 }
 }

 freeIndices[mj] = false;

 for (long j = 0; j < n; j++)
 {
 swap(M[mi * n + j], M[mj * n + j]);
 swap(res[mi * n + j], res[mj * n + j]);
 M[mj * n + j] /= pivot;
 res[mj * n + j] /= pivot;
 }

 for (long i = 0; i < n; i++)
 {
 if (i != mj)
 {
 double scale = M[i * n + mj];
 for (long j = 0; j < n; j++)
 {
 M[i * n + j] -= scale * M[mj * n + j];
 res[i * n + j] -= scale * res[mj * n + j];
 }
 }
 }
 }

 return res;
}

// Small utility functions for Prony algorithm

double Sgk(const vector<double> &values, const long m, const long x, const long i)
{
 if (i != m)
 {
 return values[x + i] + values[x + 2 * m - i];
 }
 else
 {
 return values[x + m];
 }
}

double CosSin(const std::vector<double> &frequencies, const long m, const long x, const long i)
{
 if (i < m)
 {
 return sin(frequencies[i] * x);
 }
 else
 {
 return cos(frequencies[i - m] * x);
 }
}

vector<double> MultiplyMatrixVector(const vector<double> &M, const long n, const vector<double> &V)
{
 vector<double> res(n, 0.0);
 for (long i = 0; i < n; i++)

 13

 {
 for (long j = 0; j < n; j++)
 {
 res[i] += M[i * n + j] * V[j];
 }
 }
 return res;
}

// Returns up to m frequencies, amplitudes and phases from input data vector

void PronyFit(const vector<double> &values, const long &m, vector<double> &frequenciesRad,
vector<double> &litudes, vector<double> &phases)
{
 long p = 2 * m;
 long n = static_cast<long>(values.size());

 // CREATE VECTOR AND MATRIX TO GET POLYNOMIAL COEFFICIENTS

 vector<double> A(m * m, 0.0);
 vector<double> B(m, 0.0);
 for (long i = 0; i < m; i++)
 {
 for (long x = 0; x < n - p; x++)
 {
 for (long j = 0; j < m; j++)
 {
 A[i * m + j] += Sgk(values, m, x, i + 1) * Sgk(values, m, x, j + 1);
 }
 B[i] -= Sgk(values, m, x, i + 1) * Sgk(values, m, x, 0);
 }
 }

 vector<double> inverseA = InverseMatrix(A, m);
 vector<double> X = MultiplyMatrixVector(inverseA, m, B);

 // CREATE LINEAR COMBINATION OF CHEBYSHEV POLYNOMIALS

 vector<double> Tnm2(1, 1.0); // 1
 double coeffsTnm1[] = { 0.0, 1.0 }; // X
 vector<double> Tnm1(coeffsTnm1, coeffsTnm1 + sizeof(coeffsTnm1) / sizeof(double));
 double coeffsP[] = { X[m - 1], 2.0 * X[m - 2] };
 vector<double> P(coeffsP, coeffsP + sizeof(coeffsP) / sizeof(double));

 for (long i = m - 3; -1 <= i; i--)
 {
 vector<double> Tn(Tnm1.size() + 1, 0.0);
 for (size_t j = 0; j < Tnm1.size(); j++)
 {
 Tn[j + 1] += 2.0 * Tnm1[j];
 }
 for (size_t j = 0; j < Tnm2.size(); j++)
 {
 Tn[j] -= Tnm2[j];
 }

 Tnm2 = Tnm1;
 Tnm1 = Tn;

 double k = 2.0;
 if (0 <= i)
 {

 14

 k *= X[i];
 }

 for (size_t j = 0; j < Tn.size(); j++)
 {
 Tn[j] *= k;
 }
 for (size_t j = 0; j < P.size(); j++)
 {
 Tn[j] += P[j];
 }

 P = Tn;
 }

 // SOLVE FOR COSINE OF FREQUENCIES

 const double epsilon = 1.e-6;
 vector<COMPLEX> roots = PolyRoots(P, epsilon, 100, 2.0);

 // CONVERT TO FREQUENCIES IF ROOTS ARE VALID

 for (long i = 0; i < m; i++)
 {
 if ((fabs(roots[i].imag()) < epsilon) && (fabs(roots[i].real()) < 1.0 + epsilon))
 {
 frequenciesRad.push_back(acos(max(min(roots[i].real(), 1.0), -1.0)));
 }
 }

 // CREATE VECTOR AND MATRIX TO GET AMPLITUDES AND PHASES

 long nbFreq = static_cast<long>(frequenciesRad.size());
 long m2 = 2 * nbFreq;

 vector<double> A2(m2 * m2, 0.0);
 vector<double> B2(m2, 0.0);
 for (long i = 0; i < m2; i++)
 {
 for (long x = 0; x < n; x++)
 {
 for (long j = 0; j < m2; j++)
 {

A2[i * m2 + j] += CosSin(frequenciesRad, nbFreq, x, i)
* CosSin(frequenciesRad, nbFreq, x, j);

 }
 B2[i] += CosSin(frequenciesRad, nbFreq, x, i) * values[x];
 }
 }

 vector<double> inverseA2 = InverseMatrix(A2, m2);
 vector<double> X2 = MultiplyMatrixVector(inverseA2, m2, B2);

 // CONVERT TO FINAL AMPLITUDE AND PHASES

 for (long i = 0; i < nbFreq; i++)
 {
 amplitudes.push_back(sqrt(X2[i] * X2[i] + X2[i + nbFreq] * X2[i + nbFreq]));
 phases.push_back(-atan2(X2[i], X2[i + nbFreq]));
 }
}

 15

// Example program using PronyFit

int main(int argc, char* argv[])
{
 vector<double> originalData(32, 0.0);

 vector<double> originalFrequencies;
 originalFrequencies.push_back(0.3 * 2.0 * kPI / originalData.size());
 originalFrequencies.push_back(1.7 * 2.0 * kPI / originalData.size());
 originalFrequencies.push_back(3.5 * 2.0 * kPI / originalData.size());
 double originalAmplitudes[] = { 3.0, 5.0, 0.7 };
 double originalPhases[] = { 0.0, 1.0, 2.0 };

 for (size_t i = 0; i < originalData.size(); i++)
 {
 for (size_t j = 0; j < originalFrequencies.size(); j++)
 {
 originalData[i] += originalAmplitudes[j] * cos(originalFrequencies[j] * i

+ originalPhases[j]);
 }
 }

 vector<double> pronyFrequencies;
 vector<double> pronyAmplitudes;
 vector<double> pronyPhases;
 PronyFit(originalData, 3, pronyFrequencies, pronyAmplitudes, pronyPhases);

 vector<double> pronyData(originalData.size(), 0.0);
 for (size_t i = 0; i < pronyData.size(); i++)
 {
 for (size_t j = 0; j < pronyFrequencies.size(); j++)
 {
 pronyData[i] += pronyAmplitudes[j] * cos(pronyFrequencies[j] * i

 + pronyPhases[j]);
 }

 double error = fabs(pronyData[i] - originalData[i]);
 printf("Original: % .6f / Prony: % .6f / Error: % .6f\n", originalData[i], pronyData[i], error);
 }

 return 0;
}

