Linear Prediction and Levinson-Durbin Algorithm

Cedrick Collomb
http://ccollomb.free.fr/
Copyright © 2009. All Rights Reserved.

Created: February 3, 2009
Last Modified: November 12, 2009

Contents

1. Description of Linear Prediction ... 1
2. Minimizing the error .. 2
 a. Relations between coefficients a_n .. 2
 b. Solving for the coefficients a_n .. 2
3. Levinson-Durbin recursion .. 3
 a. Solving the size one problem .. 3
 b. Solving the size $k+1$ problem .. 4
 c. Summary of the algorithm .. 6
4. Appendix. Non optimized C++ code .. 6

1. Description of Linear Prediction

Given a discrete set of original values $(y_n)_{n \in [0,M]}$ which we extend to $(y_n)_{n \in \mathbb{Z}}$ with an infinite number of zeroes, we would like to find the best k coefficients $(a_n)_{n \in [1,k]}$ that will approximate y_n by $-\sum_{i=1}^{k} a_i y_{n-i}$. A common way to define best is to use the least-squares sense. Which means finding $(a_n)_{n \in [1,k]}$ so that to minimize the sum of the squares of the error between the original and approximated values.

$$E = \sum_{n=-\infty}^{\infty} \left(y_n - \left(-\sum_{i=1}^{k} a_i y_{n-i} \right) \right)^2$$

Defining $a_0 = 1$ gives the simpler $E = \sum_{n=-\infty}^{\infty} \left(\sum_{i=0}^{k} a_i y_{n-i} \right)^2$ which is the value we would like to minimize.
2. Minimizing the error

a. Relations between coefficients a_n

At E’s minimum for $j \in [1,k]$ we have $\frac{\partial E}{\partial a_j} = 0$. Calculating the partial derivatives of E gives

$$\frac{\partial}{\partial a_j} \sum_{n=-\infty}^{\infty} \left(\sum_{i=0}^{k} a_i y_n^{(i)} \right)^2 = \sum_{n=-\infty}^{\infty} \frac{\partial}{\partial a_j} \left(\sum_{i=0}^{k} a_i y_n^{(i)} \right)^2 = \sum_{n=-\infty}^{\infty} 2y_{n-j} \left(\sum_{i=0}^{k} a_i y_n^{(i)} \right) = 0.$$

Although the sum is written as infinite, it is finite since all terms vanish to zero at some point, therefore we can swap the two sum signs and get

$$2 \sum_{i=0}^{k} a_i \sum_{n=-\infty}^{\infty} y_{n-j} y_{n-i} = 0.$$

Which can be rewritten

$$\sum_{i=0}^{k} a_i \sum_{n=-\infty}^{\infty} y_n y_{n+i} = 0.$$

Defining $R_i = \sum_{n=-\infty}^{\infty} y_n y_{n+i}$ (1)

It takes the final following form $\forall j \in [1,k], \sum_{i=0}^{k} a_i R_{j-i} = 0$.

Which can we presented in the matrix form $MA_k = 0$ with

$$M = \begin{bmatrix} R_1 & R_0 & R_1 & \cdots & R_{k-1} \\ R_2 & R_1 & R_0 & \cdots & R_{k-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ R_{k-1} & R_{k-2} & \cdots & R_2 & R_1 \\ R_k & R_{k-1} & \cdots & R_1 & R_0 \end{bmatrix} \quad \text{and} \quad A_k = \begin{bmatrix} 1 \\ a_2 \\ \vdots \\ a_{k-1} \\ a_k \end{bmatrix}$$

b. Solving for the coefficients a_n

The matrix M has $k+1$ columns and k lines. The system is not under determined, however in order to solve it, it is more convenient to make the system under a square Matrix form.

We could rewrite $MA_k = 0$ into a square system easily as below, however there is an
easier and better although less direct way to solve this system.

\[
\begin{bmatrix}
R_0 & R_1 & \cdots & R_{k-1} \\
R_1 & R_0 & \cdots & R_{k-2} \\
\vdots & \vdots & \ddots & \vdots \\
R_{k-1} & R_{k-2} & \cdots & R_0
\end{bmatrix}
\begin{bmatrix}
a_1 \\
a_2 \\
\vdots \\
a_k
\end{bmatrix} =
\begin{bmatrix}
R_0 \\
R_1 \\
\vdots \\
R_{k-1}
\end{bmatrix}
\]

Looking at M, we can notice that M is very close to be a Toeplitz symmetric Matrix, with only the top row missing. We also notice that expending the top row would complete it into a square Matrix and system.

\[
N_k A_k = \begin{bmatrix}
E_k \\
0 \\
0 \\
\vdots \\
0
\end{bmatrix}
\text{ with } N_k = \begin{bmatrix}
R_0 & R_1 & \cdots & R_k \\
R_1 & R_0 & \cdots & R_{k-1} \\
\vdots & \vdots & \ddots & \vdots \\
R_{k-1} & R_{k-2} & \cdots & R_0
\end{bmatrix}
\text{ and } A_k = \begin{bmatrix}
1 \\
a_1 \\
a_2 \\
\vdots \\
a_k
\end{bmatrix}
\]

We do not know the value of \(E_k \) at that point since it is a function of \(A_k \) and the coefficients \(\{ R_j \}_{j=0}^{k} \).

This is a regular square linear system that we can not solve with the usual linear system solver. However this system being a Toeplitz matrix, can actually be solved better and quicker with a very simple recursive method called the Levinson-Durbin recursion.

3. Levinson-Durbin recursion

The basic simple ideas behind the recursion are first that it is easy to solve the system for \(k = 1 \), and second that it is also very simple to solve for a \(k+1 \) coefficients sized problem when we have solved a for a \(k \) coefficients sized problem. In general none of the coefficients of the different sized problem match, so it is not a way to calculate \(a_{k+1} \) but a way to calculate the whole vector \(A_{k+1} \) as a function of \(N_{k+1} \), \(E_k \), and \(A_k \). Thinking about it Levinson-Durbin induction would be a better name.

a. Solving the size one problem

We are looking for \(A_i = \begin{bmatrix} 1 \\ a_i \end{bmatrix} \) so that \(N_i A_i = \begin{bmatrix} E_i \\ 0 \end{bmatrix} \) with \(N_i = \begin{bmatrix} R_0 & R_1 \\ R_1 & R_0 \end{bmatrix} \) and \(E_i \) is
not necessary at this stage. The dot product of the second line of N_1 and A_i gives $R_1 + R_0 a_i = 0$, with $R_0 = \sum_{n=-\infty}^\infty y_n^2 > 0$.

Therefore

$$a_i = \frac{R_i}{R_0}$$

(2)

Therefore, we have found $A_i = \begin{bmatrix} 1 \\ a_i \end{bmatrix}$ and also

$$E_i = R_0 + R_i a_i$$

(3)

b. Solving the size k+1 problem

Suppose that we have solved the size k problem and have found A_k, N_k and E_k. Then we have

$$\begin{bmatrix} R_0 & R_1 & \cdots & R_k \\ R_1 & R_0 & \cdots & R_{k-1} \\ \vdots & \vdots & \ddots & \vdots \\ R_k & R_{k-1} & \cdots & R_0 \end{bmatrix} \begin{bmatrix} 1 \\ a_1 \\ a_2 \\ \vdots \\ a_k \end{bmatrix} = \begin{bmatrix} E_k \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

N_{k+1} has one more row and column than N_k so we can not apply it directly to A_k, however if we expend A_k with a zero and call this vector U_{k+1} we can apply N_{k+1} to it and we get the following interesting result

$$\begin{bmatrix} R_0 & R_1 & \cdots & R_{k+1} \\ R_1 & R_0 & \cdots & R_k \\ \vdots & \vdots & \ddots & \vdots \\ R_{k+1} & R_k & \cdots & R_0 \end{bmatrix} \begin{bmatrix} 1 \\ a_1 \\ a_2 \\ \vdots \\ a_k \end{bmatrix} = \begin{bmatrix} E_k \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}. $$

$$\sum_{j=0}^k a_j R_{k+1-j}$$

Since the matrix is symmetric, we also have something remarkable when reversing the order of coefficients of U_{k+1} and calling this vector V_{k+1}.
We can notice that a linear combination $U_{k+1} + \lambda V_{k+1}$ is of the form wanted for A_{k+1} since the first element is a 1 for all values of λ. Now if there was a value of λ for which $N_{k+1}(U_{k+1} + \lambda)$ would look like
\[
\begin{bmatrix}
E_{k+1} \\
0 \\
0 \\
\vdots \\
0
\end{bmatrix},
\]
equivalent to E_{k+1} not being known at this stage, that would mean that we have found A_{k+1}.

Calculating $N_{k+1}(U_{k+1} + \lambda)$ gives
\[
\begin{bmatrix}
R_0 & R_1 & \cdots & R_{k+1} \\
R_1 & R_0 & \cdots & R_k \\
\vdots & \vdots & \ddots & \vdots \\
R_{k+1} & R_k & \cdots & R_0
\end{bmatrix} \begin{bmatrix}
1 \\
a_k + \lambda a_k \\
a_2 + \lambda a_{k-1} \\
\vdots \\
a_k + \lambda a_1 \\
\lambda
\end{bmatrix} = \begin{bmatrix}
E_k + \lambda \sum_{j=0}^{k} a_j R_{k+1-j} \\
0 \\
0 \\
\vdots \\
0
\end{bmatrix}.
\]

So we just need to find λ satisfying $\sum_{j=0}^{k} a_j R_{k+1-j} + \lambda E_k = 0$ which is trivial.

Therefore
\[
\lambda = \frac{-\sum_{j=0}^{k} a_j R_{k+1-j}}{E_k} \quad (4)
\]
And also
\[
A_{k+1} = U_{k+1} + \lambda V_{k+1} \quad (5)
\]
Finally
\[
E_{k+1} = E_k + \lambda \sum_{j=0}^{k} a_j R_{k+1-j} = (1 - \lambda^2) E_k \quad (6)
\]
c. Summary of the algorithm

- Choose \(m \) the number of coefficients wanted
- Compute all the \(\left(R_j \right)_{j=0;\ldots;m} \) using (1)
- Compute \(A_j \) using (2)
- Compute \(E_i \) using (3)
- For \(k \) from 1 to \(m \)
 - Calculate \(\lambda \) using (4)
 - Calculate \(U_{k+1}, V_{k+1}, A_{k+1} \) using (5)
 - Update \(E_{k+1} \) using (6)

4. Appendix. Non optimized C++ code

```cpp
#include <math.h>
#include <vector>

using namespace std;

// Returns in vector linear prediction coefficients calculated using Levinson Durbin
void ForwardLinearPrediction( vector<double> &coeffs, const vector<double> &x )
{
    // GET SIZE FROM INPUT VECTORS
    size_t N = x.size() - 1;
    size_t m = coeffs.size();

    // INITIALIZE R WITH AUTOCORRELATION COEFFICIENTS
    vector<double> R( m + 1, 0.0 );
    for ( size_t i = 0; i <= m; i++ )
        for ( size_t j = 0; j <= N - i; j++ )
            R[i] += x[j] * x[j + i];

    // INITIALIZE Ak
    vector<double> Ak( m + 1, 0.0 );
    Ak[0] = 1.0;

    // INITIALIZE Ek
    double Ek = R[0];

    // LEVINSON-DURBIN RECURSION
    for ( size_t k = 0; k < m; k++ )
    {
        // COMPUTE LAMBDA
        double lambda = 0.0;
        for ( size_t j = 0; j <= k; j++ )
            lambda -= Ak[j] * R[k + 1 - j];
```
lambda /= Ek;

// UPDATE Ak
for (size_t n = 0; n <= (k + 1) / 2; n++)
{
 double temp = Ak[k + 1 - n] + lambda * Ak[n];
 Ak[n] = Ak[n] + lambda * Ak[k + 1 - n];
 Ak[k + 1 - n] = temp;
}

// UPDATE Ek
Ek *= 1.0 - lambda * lambda;

// ASSIGN COEFFICIENTS
coeffs.assign(++Ak.begin(), Ak.end());

// Example program using Forward Linear Prediction

int main(int argc, char *argv[])
{
 // CREATE DATA TO APPROXIMATE
 vector<double> original(128, 0.0);
 for (size_t i = 0; i < original.size(); i++)
 {
 original[i] = sin(i * 0.01) + 0.75 * sin(i * 0.03)
 + 0.5 * sin(i * 0.05) + 0.25 * sin(i * 0.11);
 }

 // GET FORWARD LINEAR PREDICTION COEFFICIENTS
 vector<double> coeffs(4, 0.0);
 ForwardLinearPrediction(coeffs, original);

 // PREDICT DATA LINEARLY
 vector<double> predicted(original);
 size_t m = coeffs.size();
 for (size_t i = m; i < predicted.size(); i++)
 {
 predicted[i] = 0.0;
 for (size_t j = 0; j < m; j++)
 {
 predicted[i] -= coeffs[j] * original[i - 1 - j];
 }
 }

 // CALCULATE AND DISPLAY ERROR
 double error = 0.0;
 for (size_t i = m; i < predicted.size(); i++)
 {
 printf("Index: %.2d / Original: %.6f / Predicted: %.6f\n", i, original[i], predicted[i]);
 double delta = predicted[i] - original[i];
 error += delta * delta;
 }
 printf("Forward Linear Prediction Approximation Error: %f\n", error);

 return 0;
}